

CTC in clinical studies:

Latest reports on GI cancers

François-Clément Bidard, MD PhD

GI cancers are characterized by

Multimodal treatment strategies
Treatments are adapted to tumor burden & prognosis
a perfect setting to implement biomarkers to evaluate

Metastasis ability

Tumor burden / response to treatment

Strong clinical utility of somatic genomic markersKRAS/BRAF status in CRC

I. Colorectal ADK: metastatic setting

Quantitative CTC count – clinical validity

CTC count before and during treatment is a prognostic marker

- Cohen et al, JCO 2008, N=430 patients, CellSearch, LOE II
- Tol et al, Ann Oncol 2010, N=467 patients, CellSearch, LOE II
- Sastre et al, Oncologist 2012, N=180 patients, CellSearch, LOE III
- Recent subgroup analysis Sastre et al, Clin Colorectal Cancer 2013
- Gazzaniga et al, J Cancer Res Clin Oncol 2013, N=119 patients, CellSearch, LOE III

Threshold >=3 vs >=1 ?

- Gazzaniga et al, J Cancer Res Clin Oncol 2013

Quantitative CTC count changes – clinical utility ???

- **1 Population size**
- -- / Pos: only 5% of patients !!!!

Quantitative CTC count changes – clinical utility ???

1 - Population size
2 - Detection of PFS < 6 months
Sp=80% & Se=14%

Quantitative CTC count changes – clinical utility ???

- 1 Population size
- 2 Detection of PFS < 6 months

Sp=80% & Se=14%

3 – CEA changes are informative

Aggarwal et al, Ann Oncol 2013

Quantitative CTC count changes – clinical utility ???

- 1 Population size
- 2 Detection of PFS < 6 months

Sp=80% & Se=14%

3 – CEA changes are informative

è Probably marginal utility of CTC count changes in the general M+ population

È Trials similar to SWOG 500 & CirCe 01 would require thousands of patients

How to overcome these issues ?

From the CTC side:

Investigating other detection techniques in patients

è Same CTC definition, but more sensitive (e.g. microfluidics)

Other CTC definition
EPISPOT Deneve *et al*, Clin Chem 2013

➢More molecular characterization

Plastin 3, Yokobori et al, Cancer Res 2013

Eric Denève,¹ Sabine Riethdorf,² Jeanne Ramos,³ David Nocca,¹ Amandine Coffy,⁴ Jean-Pierre Daurès,⁴ Thierry Maudelonde,⁵ Jean-Michel Fabre,¹ Klaus Pantel,² and Catherine Alix-Panabières^{4,5,6*} Clin Chem 2013

60 M0 and 15 M1 CRC before primary cancer surgery

EPISPOT detected more CTC than CellSearch

Liver as a filter for EpCam+ cells?

EPISPOT & CellSearch detected same amount of CTC

No concordance between the 2 techniques

EPISPOT associated with poor differentiation & absence of emboli (not with M stage)

		EPISPOT		CellSearch	
Metastatis			0.44		0.0181
M0	60	34/59 (57.6)		12/55 (21.8)	
M+	15	7/15 (46.7)		8/14 (57.1)	

Testing different thresholds, in M0 patients EPISPOT showed a significant impact on cancer-specific survival (p=0.046) CELLSEARCH didn't

Liver

Colon cancer

How to overcome these issues ?

From the clinical side:

Investigating clinically challenging subgroups

è Resectable metastases

Length & strengh of (neo)adjuvant treatment

Potentially resectable metastases

Length & strengh of first-line chemotherapy Give an early indication about the future tumor response

& whether surgical resection of metastases will become possible

II. Colorectal ADK: adjuvant setting

Lu et al, Br J Cancer 2013

hTERT, CK19, CK20, CEA mRNA; 90 stage II-III pts CTC <u>after adjuvant FOLFOX is an independent prognostic marker (N=90 pts)</u>

So far, <u>no confirmation</u> of the previous report (Uen et al Ann Surg 2007) which strongly suggested that these mRNA can distinguish high risk stage II cancers

Gazzaniga et al, Tumor Biol 2013

- CellSearch; 37 stage II-III pts
- 8 pts (22%) with ≥1CTC **after surgery**, before the start of adj chemotherapy Correlated with N+ status

III. Colorectal ADK: molecular characterization

Patient selection: everyday practice vs selected to have a "high" CTC count

CTC sorting	A few CTC	And
U	single cell analysis	No leukocyte
	batch analysis	A few leukocytes
	-	A lot of leukocytes

Whole genome amplification : amplification consistent across the genome ?

Sequencing	Technique	Sensitivity	Min CTC/leuko ratio
	Standard PCR	5-10 %	10-20%
	Modified PCR (ASA, COLD)	1 %	2 %
	Standard NGS	1 %	2 %
	Modified NGS (barcoding)	<0.1 %	≈0.2 %
	BEAMing / PAP / ddPCR	<0.1 %	≈ 0.2 %

Clinical interpretation: differences in mutational status: artefact or reality?

ctDNA

Complex Tumor Genomes Inferred from Single Circulating Tumor Cells by Array-CGH and Next-Generation Sequencing 😰

Ellen Heitzer¹, Martina Auer¹, Christin Gasch⁶, Martin Pichler³, Peter Ulz¹, Eva Maria Hoffmann¹, Sigurd Lax⁵, Julie Waldispuehl-Geigl¹, Oliver Mauermann⁶, Carolin Lackner², Gerald Höfler², Florian Eisner³, Heinz Sill⁴, Hellmut Samonigg³, Klaus Pantel⁶, Sabine Riethdorf⁶, Thomas Bauernhofer³, Jochen B. Geigl¹, and Michael R. Speicher¹

6 metastatic CRC patients:

37 CTC isolated individually (post CellSearch sorting) È WGA È CGH & Sequencing

Primary tumor

Metastasis

DNA copy number profiles B. Globally similar

Cancer Res 2013

Complex Tumor Genomes Inferred from Single Circulating Tumor Cells by Array-CGH and Next-Generation Sequencing 😰

Ellen Heitzer¹, Martina Auer¹, Christin Gasch⁶, Martin Pichler³, Peter Ulz¹, Eva Maria Hoffmann¹, Sigurd Lax⁵, Julie Waldispuehl-Geigl¹, Oliver Mauermann⁶, Carolin Lackner², Gerald Höfler², Florian Eisner³, Heinz Sill⁴, Hellmut Samonigg³, Klaus Pantel⁶, Sabine Riethdorf⁶, Thomas Bauernhofer³, Jochen B. Geigl¹, and Michael R. Speicher¹

6 metastatic CRC patients:

37 CTC isolated individually (post CellSearch sorting) È WGA È CGH & Sequencing

Targeted sequencing 68 CRC-associated genes

• CTCs harbored some level of genetic heterogeneity

• Mutations harbored by CTC were present either at clonal or subclonal level in primary tumor & matched metastasis

Use of CTC as a molecular surrogate (liquid biopsy)

Cancer Res 2013

Heterogeneity of Epidermal Growth Factor Receptor Status and Mutations of *KRAS/PIK3CA* in Circulating Tumor Cells of Patients with Colorectal Cancer

Christin Gasch,¹ Thomas Bauernhofer,² Martin Pichler,³ Sabine Langer-Freitag,⁴ Matthias Reeh,⁵ Adrian M. Seifert,⁵ Oliver Mauermann,¹ Jakob R. Izbicki,⁵ Klaus Pantel,¹ and Sabine Riethdorf^{1*}

EGFR expression & amplification in cell lines & CRC samples

5 metastatic CRC patients:
CTC isolated individually (post CellSearch sorting)
WGA Sequencing (KRAS/BRAF/PIK3CA)

Intrapatient genetic heterogeneity between CTCs

Clin Chem 2013

Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: *KRAS* mutation status in pure CTCs

Francesco Fabbri^{a,*}, Silvia Carloni^a, Wainer Zoli^a, Paola Ulivi^a, Giulia Gallerani^b, Pietro Fici^c, Elisa Chiadini^a, Alessandro Passardi^d, Giovanni L. Frassineti^d, Angela Ragazzini^e, Dino Amadori^d

* Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy

^bDepartment of Morphology and Experimental Medicine, University of Ferrara, Ferrara, Italy

^c Department of Internal Medicine, Aging and Renal Disease, University of Bologna, Section of Nephrology, Dialysis and Transplantation, Bologna, Italy

^d Department of Medical Oncology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy

" Unit of Biostatistics and Clinical Trials, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy

DEParray in 40 metastatic CRC patients

15 to 20ml of blood È Oncoquick density gradient È panCK cocktail/Hoechst/CD45

èDEParray è aliquots of 1 then 5-10 epithelial CTCs

NGA E KRAS exon 2 standard sequencing

• Slightly higher detection rate (theoretical comparison % CellSearch)

Single CTC sequencing led to inconsistent results
batch analysis !!
Exclusion of pts with 1-2 CTC detected

• Poor accuracy for KRAS status determination in patients (cell lines were OK)

Patient no.	KRAS status			
	Primary	CTC		
32	G12D	G13D; G12D; G12C		
40	G12D	G12D		
2	G13D	WT		
5	G13D	WT		
7	G13D	WT		
25	G12C	WT		
29	G12A	WT		
31	G12D	WT		
33	G12V	WT		
28	G12V	ne		
14	G12D	ne		
38	G12D	ne		
11	WT	WT		
22	WT	WT		
24	WT	WT		
30	WT	WT		
36	WT	WT		
37	WT	WT		
39	WT	G12D		
16	WT	ne		
26	WT	ne		

Cancer Lett 2013

KRAS and *BRAF* mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue

Bianca Mostert¹, Yuqiu Jiang², Anieta M. Sieuwerts³, Haiying Wang², Joan Bolt-de Vries³, Katharina Biermann⁴, Jaco Kraan¹, Zarina Lalmahomed⁵, Anne van Galen³, Vanja de Weerd³, Petra van der Spoel¹, Raquel Ramírez-Moreno⁶, Cornelis Verhoef⁵, Jan N.M. IJzermans⁵, Yixin Wang², Jan-Willem Gratama¹, John A. Foekens³, Stefan Sleijfer¹ and John W.M. Martens³

Int J Cancer 2013

43 metastatic CRC patients with primary tumor available, at time of liver met resection 30ml of blood È Ficoll È CellProfile (EpCam+) i.e. *few CTC within 1,000s leukocytes* Comparison of 3 techniques for rare mutant allele detection (KRAS & BRAF): COLD PCR + ASA PCR = ASB PCR

• Best concordance obtained by ASB PCR (sensitivity up to 0.2% in *in vitro* assays)

In the 20 pts with concordant status between primary & met
 in 13 patients wt, 12 were wt according to CTC analysis
 in 6 patients mut, 1 was mut according to CTC analysis (low CTC number in <u>that</u> setting)

In the 11 pts (>30% !) with discordant status between primary & met
 CTC-based mutation status was wt in 7 pts (reality or poor sensitivity ?)

V. Pancreatic ADK

Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial

F. C. Bidard^{1,2*}, F. Huguet³, C. Louvet⁴, L. Mineur⁵, O. Bouché⁶, B. Chibaudel⁷, P. Artru⁸, F. Desseigne⁹, J. B. Bachet¹⁰, C. Mathiot¹¹, J. Y. Pierga^{1,2} & P. Hammel¹² Ann Oncol 2013

Locally advanced M0 pancreatic cancer patients (non surgically resectable)

Focus on the visible tumor mass (i.e. with radiation therapy)

Focus on the invisible systemic disease (i.e. with full dose systemic therapy)

Knowing that metastases are detected in most patients few months after initiation of therapy

TC as a guiding tool ??? (something that ctDNA probably can't do)

N=79 patients, 2 sample time (baseline & 2 months) CellSearch system

 Global CTC detection rate of 9% (≥1 CTC) – all CTCs were EGFR+ Baseline: 4 pts / 75 (5%)
 After 2 months of gemcitabine +/- erlotinib: 5 pts / 56 (11%) with ≥1 CTC
 Range of CTCs : 1-2 CTC in 8 pts, 15 CTCs in 1 pt

• All detected CTCs were EGFR+ (CellSearch immunostaining)

Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial

F. C. Bidard^{1,2*}, F. Huguet³, C. Louvet⁴, L. Mineur⁵, O. Bouché⁶, B. Chibaudel⁷, P. Artru⁸, F. Desseigne⁹, J. B. Bachet¹⁰, C. Mathiot¹¹, J. Y. Pierga^{1,2} & P. Hammel¹²

• CTC detection correlated with poor differentiation

And not with any other patient characteristic

homogeneous population "fit" for the trial (good general condition & liver function)

Univariate analysis

Multivariate analysis

Ann Oncol 2013

	Relative risk (95%CI)	P value		
Model with CTCs at baseline ($N = 75$ patients))			
\geq 1 CTC/7.5 ml at baseline (<i>n</i> = 4 patients at risk)	3.1 (1.0-8.8)	0.04		
Hb < 110 g/l ($n = 12$ patients at risk)	3.2 (1.4-7.4)	0.008		
ALP > ULNV ($n = 30$ patients at risk)	1.7 (0.9-2.9)	0.07		
Model with CTCs at 2 months ($N = 56$ patients)				
\geq 1 CTCs/7.5 ml at 2 months (<i>n</i> = 5 patients at risk)	2.2 (0.8-6.0)	0.11		
Hb < 110 g/l ($n = 7$ patients at risk)	3.2 (1.1-8.7)	0.02		
ALP > ULNV ($n = 21$ patients at risk)	1.6 (0.8-3.1)	0.20		
Model with CTC at baseline and/or 2 months ($N = 79$ patients)				
\geq 1 CTC/7.5 ml (<i>n</i> = 9 patients at risk)	2.5 (1.2-5.4)	0.01		
Hb < 110 g/l ($n = 13$ patients at risk	3.4 (1.4-7.9)	0.005		
ALP > ULNV ($n = 32$ patients at risk)	1.6 (0.9-2.9)	0.07		

VI. Neuroendocrine tumors

Circulating Tumor Cells As Prognostic Markers in Neuroendocrine Tumors

Mohid S. Khan, Amy Kirkwood, Theodora Tsigani, Jorge Garcia-Hernandez, John A. Hartley, Martyn E. Caplin, and Tim Meyer

CellSearch before a new line of therapy

N=176 pts with mesurable NET (101 midgut & 47 pancreatic)

Table 2. Baseline CTC Counts						
	Patients With CTCs (%)					
Characteristic	≥ 1	≥ 2	≥ 5	≥ 10	≥ 50	Range of CTC Counts
Primary site						
All NETs ($n = 175$)	49	42	30	22	9	0-3,731
Midgut (n = 101)	51	47	32	24	6	0-294
Pancreatic ($n = 42$)	36	24	19	17	12	0-430
Bronchial ($n = 17$)	41	29	24	18	12	0-452
Unknown (n $= 12$)	92	92	67	33	17	0-3,731
Tumor burden, %						
≤ 25	33	24	17	10	2	
> 25	64	59	42	34	14	
Ρ	< .001	< .001	< .001	< .001	.005	
Tumor grade						
1	40	31	24	22	4	
2	54	49	27	13	6	
3	66	59	55	45	28	
Р	.036	.014	.006	.003	< .001	
ECOG PS						
0	49	43	30	22	7	
>1	50				1	
Р	1.0	1.0	.70	.379	.519	
CgA, pmol/L						
≤ 120	29	23	19	16	5	
> 120	64	57	39	27	11	
Р	< .001	< .001	.005	.1	.275	

J Clin Oncol 2013

26/09

Circulating Tumor Cells As Prognostic Markers in Neuroendocrine Tumors

Mohid S. Khan, Amy Kirkwood, Theodora Tsigani, Jorge Garcia-Hernandez, John A. Hartley, Martyn E. Caplin, and Tim Meyer

CellSearch before a new line of therapy

Prognostic value in univariate & multivariate analyses

J Clin Oncol 2013

Significant in the whole population, but also in grade I and grade II NET

VII. Esophageal & gastric cancers

Clinical Significance of Circulating Tumor Cells in Peripheral Blood From Patients With Gastric Cancer

Yoshikazu Uenosono, MD, PhD¹; Takaaki Arigami, MD, PhD¹; Tsutomu Kozono, MD¹; Shigehiro Yanagita, MD, PhD¹; Takahiko Hagihara, MD¹; Naoto Haraguchi, MD¹; Daisuke Matsushita, MD¹; Munetsugu Hirata, MD¹; Hideo Arima, MD, PhD¹; Yawara Funasako, MD, PhD¹; Yuko Kijima, MD, PhD¹; Akihiro Nakajo, MD, PhD¹; Hiroshi Okumura, MD, PhD¹; Sumiya Ishigami, MD, PhD¹; Shuichi Hokita, MD, PhD²; Shinichi Ueno, MD, PhD¹; and Shoji Natsugoe, MD, PhD¹

CellSearch before any treatment

- N=148 pts with resected tumor
- followed by adjuvant S1
- **è** 11% with ≥1CTC

≥1CTC correlated with T, N & M status

HR = 1.73 [1.08-2.77] in multiv. analysis

Cancer 2013

N=103 pts with non-resectable tumor (M+)

è 60% with ≥1CTC

VIII. Liver cancer

Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma

Kornelius Schulze¹, Christin Gasch², Katharina Staufer³, Björn Nashan⁴, Ansgar W. Lohse¹, Klaus Pantel², Sabine Riethdorf^{2*} and Henning Wege^{1*}

Int J Cancer 2013

CTC detection in 59 HCC patients (stage I to IVB), with CellSearch + control pts

18 HCC pts (30%) had 1-5 CTC; 1 non-HCC pt (5%) had 1 CTC

Correlated with

- Tumor stage
- AFP
- Tumor vascular invasion

Overall Survival, p=0.02

Individual Profiling of Circulating Tumor Cell Composition and Therapeutic Outcome in Patients with Hepatocellular Carcinoma¹

Ivonne Nel*, Hideo A. Baba[†], Judith Ertle[‡], Frank Weber[§], Barbara Sitek[¶], Martin Eisenacher[¶], Helmut E. Meyer[¶], Joerg F. Schlaak[‡] and Andreas-Claudius Hoffmann^{*}

> N=11 HCC patients CD45 immunodepletion followed by immunocytofluorescence

Phenotypic heterogeneity
 Trend_toward shorter TTP
 for CTC with EMT phenotype

Transl Oncol 2013

From a clinical perspective... ... where are we going with CTC in GI cancer ?

Prognostic value in M1 CRC (non resectable patients)

Clinical validity : LOE II with CellSearch

No ongoing trial to demonstrate clinical utility

ctDNA prognostic value under assessment

è dead end (?)

KRAS/BRAF status assessment in M1 CRC Struggling with low CTC/leukocyte ratio & rare mutant detection Efficient techniques are time consuming

ctDNA will become the gold standard in clinics within a few years

From a clinical perspective... ... where are we going with CTC in GI cancer ?

CTC to measure intratumor genetic/phenotypic heterogeneity

Numerous evidences from M1 CRC patients

ctDNA (single mutation detection) does not quantify intratumor

heterogeneity, but can detect mutant (resistant) subclones

No clear clinical use so far

CTC to influence multimodal strategies in M1 tumors

M1 GI NET (LOE III)

M1 resectable / potentially resectable mCRC

CTC to guide the treatment decision ?

To be followed

From a clinical perspective... ... where are we going with CTC in GI cancer ?

Metastatic potential in M0 cancers

M0 gastric cancers (LOE III)

M0 LA pancreatic cancers (LOE III)

M0 Hepatocellular carcinomas (LOE IV)

EMT: not mandatory for prognosis assessment?

ctDNA may be of lower interest than CTC in M0 tumors

è To be followed