Epithelial Mesenchymal Transition (EMT) and CTCs

Massimo Cristofanilli, M.D., F.A.C.P. Professor of Medical Oncology Deputy Director of Translational Research Director of the Jefferson Breast Cancer Center

Thomas Jefferson University-Kimmel Cancer Center, Philadelphia, USA

ISMRC 2013 Paris, September 26, 2013

Genetic Intratumor Heterogeneity

Peripheral Genetic Heterogeneity

M Murtaza et al. Nature 000, 1-5 (2013) doi:10.1038/nature12065

Phenotypic Intratumoral Heterogeneity

Douglas Hanahan, Robert A. Weinberg, Cell Volume 144, Issue 5 2011 646 - 674

CD133 and disease subtype

CD133 expression breast cancer specimens by immunohistochemistry

Liu TJ, Oncogene. 2012 Apr 2. doi:

CD146 and disease subtypes

Tumor type CD146 positive P < 0.001 Estrogen receptor Negative 125/228 (54.4%) Positive 54/274 (19.6%) Progesterone receptor < 0.001 Negative 139/226 (61.5%) Positive 93/276 (33.7%) ERBB/HER2 < 0.001 Negative 149/373 (39.9%) 28/129 (21.7%) Positive Triple-negative (TNBC) < 0.001 Yes 102/148 (68.9%) No 75/354 (21.1%) в CD146 E-cadherin TNBC 1

 CD146 expression

 +
 P-value

 E-cadherin
 3 (3.3%)
 36 (40.0%)

 +
 14 (15.6%)
 37 (41.1%)
 P=0.018

TNBC 2

Zheng Q, Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1127-32.

The epithelial-mesenchymal transition generates cells with properties of stem cells

Mani SA et al, Cell 133(4):704-15,2008

Induction of EMT generates cells with stem cell properties

Pathways regulating breast CSCs.

Korkaya H , and Wicha M S Cancer Res 2013;73:3489-3493

Understanding Metastasis

Marx V, Nature, 494: 133–138

Challenges

- <u>Genetic heterogeneity</u> represents a challenge for the effective application of molecular targeted therapies
- <u>Phenotypic heterogeneity represents a</u> challenge to develop therapies that reduce tumor burden AND the development of metastases
- <u>The phenotypic plasticity of cancer cells</u> <u>suggests that CTCs</u> represent an ideal tool/model to study the metastatic process

CTCs enumeration, disease progression, seeding and metastases

Pooled analysis: Validation Prognostic Value Baseline CTCs in MBC

Liu MC, et al, ASCO 2011

Dawood S et Cancer, 113(9):2422-30, 2008

CTCs and First-line Systemic Therapy

CTC<5 n= 264 CTC≥5 n= 178

CTC<5 n= 264 CTC≥5 n= 178

CTC<5 n= 264 CTC≥5 n= 178

Overall population Patients with PD in a <u>new site</u> N=121

CTC<5 n= 57 CTC≥5 n= 64

Overall population Patients with PD in a new site N=121

CTC<5 n= 57 CTC≥5 n= 64

Estimated OS in patients with oligometastatic disease according to CTC baseline value

Group	Median	95% C.I.	Log-rank P
CTC <5	57.9	45.2 to 70.6	0.006
CTC ≥5	40.3	19.8 to 60.8	

Oligometastatic Patients n= 146 Time To New metastatic Sites (TTNS)

CTCs and stem cells/EMT

Molecular Characterization

Heterogeneity of CTC

Mego, M., Mani S. A. & Cristofanilli, M. (2010), Nat. Rev. Clin. Oncol.

Detection methods for EMT

CellSieve[™] Assay

Enumeration assay protocol

- Filtration of 7.5 ml whole blood in 90 sec
- Fixation, permeabilization & staining
- Mount on slide for cell counting

Staining

- Nucleus (blue)
- CK 8, 18, 19 (green)
- EpCAM (orange)
- CD45 (red)

Patient Sample

Stage IV breast cancer patient

	CellSieve™		CellSearch®
	EpCAM (-)	EpCAM (+)	
CTC Count	16	1	1
	Many CTCs don		

Biomarkers in EpCAM - cells

Detection of HER2/neu Status in CellSieve™Filter-Captured Cells via FISH in Pt. R-S

ScreenCell[®] Devices for cytology and Cell Culture

Isolation of rare circulating tumour cells in cancer patients by microchip technology

Nagrath S. et al, Nature 450(7173):1235-9, 2007

Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition

Yu M, Science, 339; 6119:580-584, 2013

AdnaBreast DetectTest

200 bp

100 bp 50 bp 25 bp 15 bp Tumor marker 4

Control

Expression of EMT-markers and ALDH1.

At least one of the EMT markers was expressed in 29% and ALDH1 was present in 14% of the samples, respectively.

Expression of EMT-markers and ALDH1 in CTC+ and CTC- patients

In the CTC+ group, 66 of 92 patients (72%) were positive for at least one of the EMT markers and 42 of 92 patients (46%) were positive for ALDH1, respectively. In the CTC- group, the percentages were 18% (63 of 354 patients) and 5% (19/353 patients).

Detection of CTC with EMT

1008-00

1.009+008

1.0000-000

1.6850-00

10010-000

1.001-074

FOXC2, ZEB2) and EpCAM

Lab Study 2008-0079

To assess CTCs, EMT-CTCs and circulating cancer stem cells in HER2⁺ breast cancer patients to identify potential targets

Characteristics	Ν	%
Overall	30	100
HER2+	28	93.3
HER2-	2	6.7
ER/PR+	17	56.7
ER/PR-	13	43.3
1 st line	10	33.3
$\geq 2^{nd}$ line	20	66.7
>30x10 ⁶ PBMCs	17	56.7
<30x10 ⁶ PBMCs	13	43.3
CTCs <5 (CTC 0)	19 (13)	63.3 (43.3)
CTCs ≥5	4	13.4
CellSearch not performed	7	23.3

Cell Fraction Analyses

- EMT-Transcription factors (EMT-TF) Gene expression analysis by RT–qPCR (Mego, Reuben 2011)
- TWIST1, SNAIL1, Slug, ZEB1, FOXC2, TG2 (GAPDH)
- Stem cell markers by FACS (Reuben et al., 2011)
 - ALDH activity (Aldefluor)
 - CD44, CD24, CD133
 - CD326, CD45

CD45⁻ EMT-CTCs are ALDH⁺ CD133⁺ CSCs and Not ALDH⁺ CD44⁺CD24⁻ CSCs

Treatment Naïve HER2+ patients have more ALDH+ CD133⁺ CSC than CD44⁺ CD24⁻ CSCs

Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines

Powell AA, PLoS One. 2012;7(5): e33788

DEPArray Delivers Pure Single Tumor Cells from CellSearch[™] or Another Sample Enrichment

DEPArray- Samples Processing Flow

Cartridge

The sample is extracted from the cartridge and washed twice in SB manipulation buffer

The sample is loaded into DEPArray™

Downstream Molecular Analysis

Ampli1[™] Whole Genome Amplification

TTTTT

Singles CTCs are recovered in different tubes

Fluorescently-Labeled CR-009 Cells on DEPArray Scatter Plot

- Sample was enriched for CTCs using the Veridex Cell Search[™] system.
- Sample was found to have 432 CTCs: 251 Her2/Neu + (59%) 181 Her2/Neu - (41%)
- Her2/Neu positive and negative cells were recovered using the DEPArray and are being used for genetic analysis.
- PBMCs were recovered using the DEPArray and will be used as controls for mutational studies.

CD45-APC

Fluorescently-Labeled KMO-015 Cells on DEPArray Scatter Plot

- CTCs in peripheral blood were enriched using the Veridex CellSearch[™] system.
- Sample was found to have 175 CTCs:
 50 Her2/Neu +
 125 Her2/Neu -
- Her2/Neu positive and negative cells were recovered using the DEPArray and are being used for genetic analysis.
- PBMCs were recovered using the DEPArray and will be used as controls for mutational studies.

CTC and CSCs-directed therapies

CXCR1 and Cancer Stem Cells

Reparixin Targets CSCs

Blood-based monitoring in advanced malignancies

• CTCs

- Prognostic and predictive value of enumeration (breast, prostate, colon)
- Biomarkers expression (ER, PR, HER-2)/Genomics
- Heterogeneity and EMT
- Treatment resistance and stem cells
- Detection dependent on enrichment methods

ctDNA

- identification of specific tumor-related mutations (e.g. TP53, PI3KCA, KRAS)

- Monitoring of tumor load (response)
- Detected in all patients

Conclusions

The Liquid Phase of Solid Tumors

- What to detect ?
 - CTCs, cfDNA and ctDNA
 - Prognostic and predictive value
 - Tumor heterogeneity and single mutations
- How to measure ?
 - CellSearch[™], Microfludics, label-free (filtration systems)
 - DNA extraction from plasma followed by sequencing (e.g. digital PCR confirmed by Sanger sequencing; Safe-SeqS)
- When to measure ?
 - Baseline and monitoring in advanced solid tumors
- Why to use it ?
 - real time monitoring of advanced disease

Acknowledgments

MD Anderson Cancer Center Fox Chase Cancer Center

Kathy R Alpaugh, PhD

<u>James M Reuben, PhD</u> Sendurai Mani, PhD

Thomas Jefferson University

Sandra Fernandez, PhD Zhaomei Mu, MD

University of Naples

Antonio Giordano, MD Mario Giuliano, MD

Silicon Biosystems

Nicolo Manaresi, PhD

Cynvenio

Peter Dempsey

CREATV MicroTech Cha-Mei Tang, PhD

Dompe

Pier Adelchi Ruffini Marcello Allegretti Susan McCanna