Single cell genetic analysis helps validating cytopathological identification of CTCs in patients with Clear Cells Renal Carcinoma Patrizia Paterlini Bréchot, MD, Ph.D. **Professor of Cell Biology/Oncology** University Paris Descartes/INSERM

Disclosure

Inventor/coinventor of ISET patents Founder and CSO of Rarecells

I do not receive conpensation from Rarecells nor from any other company

I have a triple task: Teaching (University Paris Descartes) Developing and implementing new tests (Hôpital Necker) Research activity (INSERM Unit)

Overview

Purpose

Technical note on ISET

Published results

New workflows

Molecular analyses of CRC

Molecular analysis of CTC from Kidney cancer

Toward a diagnostic use of CTC in predictive oncology CS-CTC= EpCam and CK positive, CD45 negative

FDA clearence: clinical validity but clinical utility not demonstrated or demonstrated in M+ patients

Sensitivity and specificity problems

Reproducible data does not mean clinically useful data

Underevaluation of CTC heterogeneity

Confounding results for molecular analyses and theranostic application

Diagnosis of CTC: diagnosis of tumor and clinical utility for patients

Tumor cells with epithelial markers in tumors: minority

34 PAC 20 (59%) tumors with pos. cells 5-70% range of pos cells 27 HCC 5 (18%) tumors with pos. cells 1-50% range of pos. cells HCC and PAC derived cell lines 95-99% pos. Cells

A. Sabile et al Am. J. Clin. Pathol. 112: 171-178, 1999

Epithelial to Mesenchymal transition + tumor heterogeneity

Why Epithelial markers are used to isolate CTC?

Diagnosis of CTC in Oncology

Tumor cells from Cervix

Tumor cells from Urine

Tumor cells from Ascitis

Tumor cells from Blood

CTC- Circulating Tumor Cells

Paterlini Brechot , Cancer letters 2007, updated

Tumor cells heterogeneity in tun tissue Gerlinger et al, NEJM, 2012

ISET Isolation by Size of Tumor/Trophoblastic cells

Open system allowing all types of analysis on CTCs

Vona et al, Am J Pathol, 2000

ISET is diagnostic and more sensitive than CellSearch

independent studies in vivo: % of positive patients

ISET (size+ cytopathology) versus

Type of cancer	Number of patients	Reference	ISET % of patients with CTC	CellSearch % of patients with CEpC (cut-off)	
Non-Small Cell Lung cancer	210 (non-metastatic and metastatic)	Hofman V et al, Int J of Cancer 2010	50%	39% (≥ 1) 21% (≥ 2)	
	20 (metastatic)	Farace F et al, Br J of Cancer, 2011	100%	45% (≥ 1) 25% (≥ 2) 15% (≥ 5)	
	40 (IIIA - IV)	Krebs M et al, J. Thoracic Onc. 2011	80%	23% (≥2)	
Prostate cancer	20 (metastatic)	Farace F et al, Br J of Cancer, 2011	100%	90 % (≥ 1) 60 % (≥ 5)	
Breast cancer	20 (metastatic)	Farace F et al, Br J of Cancer, 2011	85%	75% (≥ 1) 40% (≥ 5)	
Pancreatic cancer	54 (non-metastatic and metastatic)	Khoja L et al, Br J of Cancer, 2011	93%	40% (≥ 1)	
ISET detects CTCs in higher numbers and in more patients					

ISET - RARECELLS

- Unparalleled sensitivity (1/10 ml)
- Identifies the most malignant CTCs (expressing Vimentin)
- Identifies Circulating Tumor
- Microemboli (CTM)
- ISET allows molecular analysis of **CTCs**

Low cost, filters and cells storable; multiplex tests

Aspiration controlled by a pump allows to optimize filtration of all types of blood samples

CYTOPATHOLOGICAL DEFINITION **OF CTC**

- Nuclear size equal or larger than 16 microns,
- Irregularity of the nulear \bullet countour
- Irregularity of the chromatin \bullet
- Presence of a visible cytoplasm ۲
- High nuclear to cytoplasmic ۲ ratio (>0.8)

SPECIFICITY

Heterogeneity of circulating rare cells

Hofman et al, Clinical Cancer Research, 2011

Preoperative CTC detection using the ISET method for patients with lung cancer is a new prognostic biomarker

208 patients

49% CNHC

36% CTC

Hofman Clinical Cancer Research 2011

Diagnostic value of ICC for the detection of BRAF^{V600E} mutation on CTC isolated by ISET from metastatic melanoma patients Hofman V et al, J Invest Dermatology, 2012

Patient 1

Patient 2

•BRAF^{V600E} mutation searched in 98 tumour tissues and CTCs by pyrosequencing (T) and by ICC using the VE1 antibody (T, CTC).

•87/98 (89%) patients with CTCs

•53/98 (54%) patients with BRAF $^{\rm V600E}$ mutation detected by pyrosequencing in T

•Consistent results (T, CTC)

•8/87 (8%) patients had CTCs positive by ICC but no mutation detected on tumour tissues.

•The ICC detection of BRAF^{V600E} mutation on CTCs isolated by ISET is a very sensitive and specific method

EML4-ALK-gene rearrangement is consistently found in CTC/CTM isolated by ISET and in the tumorous tissue

Ilie M et al, Annals of Oncology, 2012

- CTCs isolated by ISET from 87 patients with lung adenocarcinoma
- ALK break-apart FISH (Abbott)
- anti-ALK antibody (5A4 clone)
- Blindly on CTCs and corresponding tumor tissues
- Five patients positive for ALK-gene rearrangement and strong ALK ICC in CTCs and T tissue.
- 82 patients negative for both ALK FISH and ALK ICC in CTCs and T tissue

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Detection of Circulating Tumor Cells Harboring a Unique ALK Rearrangement in ALK-Positive Non–Small-Cell Lung Cancer

Emma Pailler, Julien Adam, Amélie Barthélémy, Marianne Oulhen, Nathalie Auger, Alexander Valent, Isabelle Borget, David Planchard, Melissa Taylor, Fabrice André, Jean Charles Soria, Philippe Vielh, Benjamin Besse, and Françoise Farace

Representative example of vimentin/cytokeratins/ CD45/DAPI immunofluorescent staining of ALKrearranged CTCs in a ALK-positive patient 18 ALK-positive patients
14 ALK-negative patients
100 % consistant result (T, CTC)
100% of patients with detectable
CTCs by ISET

Single cell analysis: ALKrearranged CTCs expressed a mesenchymal phenotype contrasting with heterogenous epithelial and mesenchymal marker expressions in tumors

CTC challenges

Without decreasing the sensitivity and keeping cells with intact morphology

CTC isolated unfixed for NGS, RNA analysis, culture, injecton into mice

CTC collection on a slide: high throughput immuno and FISH analysis

CTC stabilization and long storage for days

ISET* by Rarecells & CellCelector[™] by ALS: powerful enrichment & selection of circulating rare cells

* ISET: Isolation by SizE of Tumor/Trophoblastic Cells

Sensitivity of isolation unfixed CRC

Number of micropipetted cells in 1 mL of blood	Number of cells detected (A549)	Recovery (A549)	
	1	100%	
	1	100%	
	1	100%	
1	1	100%	
	1	100%	
	1	100%	
	1	100%	
3	3	100%	
4	3	75%	
	4	80%	
	5	100%	
5	4	80%	
5	4	80%	
	3	60%	
	5	100%	
	9	90%	
	8	80%	
10	9	90%	
	10	100%	
	8	80%	
Overall recovery		91%	

Unpublished data

Whole genome amplification methods

	PEP	MDA RepliG (Qiagen) Genomiphi (GE)	GenomePlex (Sigma)	PicoPlex (Rubicon genomics)	MALBAC (Yikon Genomics)
Time	8 h (o/n)	2 h /8 h	~ 4 h	2 h	4 h
Cost per reaction	2,6€	5,24 € (Qiagen) 3,88 € (GE)	12,7€	28 \$	34,3 €
Yield	ng range?	10 μg / 40 μg from 10 ng purified gDNA	5-10 μg (fresh single cell)	2-5 μg (fresh single cell)	3 μg (fresh single cell)
Proportional	-	-	+	++	Better than MDA
Genome coverage in HTS (fresh single cell)		72% of the genome at ≥1x coverage (25x seq depth) (Zong et al, 2012)	6% of the genome at 0,2x coverage (Navin et al, 2011)	unpublished	85 to 93 % of the genome at ≥1x coverage (25x seq depth) (Zong et al, 2012)

Feasibility of single cell NGS by whole exome sequencing (Illumina)

Sample type	number of reads	number of mapped reads	Percentage of coverage	Average sequencing depth
Unfixed (Fresh) Single cell	51 600 412	45 5341 717	76 %	27
Fixed single cell	40 769 194	36 255 925	70 %	22
Fixed and microdissected single cell	38 455 158	32 076 608	50 %	20
Genomic DNA	43 827 640	35 532 707	95 %	23

In collaboration with

CTC transfer on slides

Ongoing: sensitivity validation (1 tumor cell per mL of blood)

VHL mutation analysis in CTCs from patients with Clear Cells Renal Carcinoma

30 patients with CCRC 22 men et 8 women Mean age 68,5 Two patients with metastasis Tested by ISET before surgery Mutation analysis: T-CTC- gDNA

CTM from CCRC patients

- VHL gene
- Identified in 1993 by Latif et al.
- Tumor suppressor gene
- Position: 3p25.26 20Kb 3 exons
- 2 ARNm de 4,5 et 4,7 Kb, two protein isoforms
- More than 500 mutations

VHL mutations found

EXON	CODON	MUTATION	TYPE OF MUTATION	CODON INITIAL	CODON MUTE	CpG	PROTEIN CHANGE
1	9	c.27G>T	Tr	GAC	TAC	Oui	D9Y
	18	c.53C>A	Tr	GCA	GAA	Non	A18E
	61	c.183C>G	Tr	CCC	CCG	Non	P61P
	65	c.194C>A	Tr	TCG	TAG	Non	S65X
	69	c.205-206delCG	Fr	CGC	-	-	E69X
	88	c.263G>A	Ts	TGG	TAG	Non	W88X
	92	c.275delA	Fr	GAC	-	-	D92X
	100	c.299delC	Fr	ACG	-	-	T100X
	109	c.327delC	Fr	ATC	-	-	H109X
2	116	c.346C>G	Tr	СТТ	GTT	Non	L116V
	118	c.353T>C	Ts	СТС	CCC	Non	L118P
	140	c.418delC	Fr	СТС	-	-	L140X
	145	c.435G>T	Tr	CAG	CAT	-	Q145H
3	158	c.472delC	Fr	CTG	-	-	L158X
	163	c.486delC	Fr	TGC	-	-	L163X
	176	c.526A>T	Tr	AGG	TGG	Non	R176W
	183	c.548C>A	Tr	TCG	TAG	Non	S183X
	207	c.620C>T	Ts	GCA	GTA	Non	A207V

Tr : Transversion; Ts : Transition; Fr : Frameshift

• Exemple of transversion : Mutation c.27G>T, codon 9 / Exon 1 (1 patient)

Exemple of a transversion found in 2 patients Mutation c.263G>A, codon 88 / Exon 1

CTC from patient CGN

CTC from patient GRA

VHL mutation analysis can help cytopathological diagnosis of CTCs in patients with Clear Cells Renal Carcinoma

Blind mutation analysis of VHL gene in T, leucocytes and CTC isolated by ISET

Cytoapthology

30 patients with CCRC 25 with VHL mutation in tumor

20 patients with CTC

205 single cell analysis : 64 CTC

VHL mutations: 57/64 CTC

7 VHL-neg CTC from tumors neg for VHL

VHL gene exon 2: T insertion in position 171 Mutation: GGTGTGGTCTCTTTAA (WT: GGTGTGGCTCTTTAA)

Ben Njima B et al, manuscript in preparation

Acknowledgements

Ms. Katia Hormigos Dr Sophie Laget

INSERM Unit 807 Dr Thierry Capiod Dr Basma Ben Jima Dr Ingrid Pfifer Pr Patrizia Paterlini Bréchot

Collaborations

Pr Paul Hofman, Patology Dpt, Nice Dr. Marius Ilie, Patology DptNice Pr. Nicole Brousse, Patology Dpt, Paris Pr. Khaled Ben Romdhane, Tunis Pr. Arnaud Mejean, Urology Dpt, Paris

THANKS FOR YOUR ATTENTION!